The performance of multiple imputation for missing covariate data within the context of regression relative survival analysis.

نویسندگان

  • Roch Giorgi
  • Aurélien Belot
  • Jean Gaudart
  • Guy Launoy
چکیده

Relative survival assesses the effects of prognostic factors on disease-specific mortality when the cause of death is uncertain or unavailable. It provides an estimate of patients' survival, allowing for the effects of other independent causes of death. Regression-based relative survival models are commonly used in population-based studies to model the effects of some prognostic factors and to estimate net survival. Most often, studies focus on routinely collected prognostic factors for which the proportion of missing values is usually low (around 5 per cent). However, in some cases, additional factors are collected with a greater proportion of missingness. In the present article, we systematically assess the performance of multiple imputation in regression analysis of relative survival through a series of simulation experiments. According to the assumptions concerning the missingness mechanism (completely at random, at random, and not at random) and the missingness pattern (monotone, non-monotone), several strategies were considered and compared: all cases analysis, complete cases analysis, missing data indicator analysis, and multiple imputation by chained equations (MICE) analysis. We showed that MICE performs well in estimating the hazard ratios and the baseline hazard function when the missing mechanism is missing at random (MAR) conditionally on the vital status. In the situations where the missing mechanism was not MAR conditionally on vital status, complete case behaves consistently. As illustration, we used data of the French Cancer Registries on relative survival of patients with colorectal cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تحلیل درستنمایی ماکزیمم مدل رگرسیون لجستیک در حالتی که داده های متغیرهای پیشگو کامل نیستند ولی متغیرهای کمکی وجود دارند

Background and Objectives: Missing data exist in many studies, e.g. in regression models, and they decrease the model's efficacy. Many methods have been suggested for handling incomplete data: they have generally focused on missing outcome values. But covariate values can also be missing.Materials and Methods: In this paper we study the missing imputation by the EM algorithm and auxiliary varia...

متن کامل

چند رویکرد برخورد با مقادیر گمشده‌ متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی‌ بالینی

Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...

متن کامل

Influence of Pattern of Missing Data on Performance of Imputation Methods: An Example from National Data on Drug Injection in Prisons

Background Policy makers need models to be able to detect groups at high risk of HIV infection. Incomplete records and dirty data are frequently seen in national data sets. Presence of missing data challenges the practice of model development. Several studies suggested that performance of imputation methods is acceptable when missing rate is moderate. One of the issues which was of less concern...

متن کامل

An Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods

Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...

متن کامل

Performance evaluation of different estimation methods for missing rainfall data

There are numerous methods to estimate missing values of which some are used depending on the data type and regional climatic characteristics. In this research, part of the monthly precipitation data in Sarab synoptic station, east Azerbaijan province, Iran was randomly considered missing values. In order to study the effectiveness of various methods to estimate missing data, by seven classic s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics in medicine

دوره 27 30  شماره 

صفحات  -

تاریخ انتشار 2008